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Multilevel Methods Applied to the
Design of Resonant Cavities

S. Costiner, F. Manolache, and S. Ta’asan

Abstract—An application of multilevel (ML) methods to com-
pute the modes and eigenvalues of resonant cavities is presented.
The involved methods include an ML eigenvalue solver, an
ML mode separation technique, a boundary treatment method,
and a subspace continuation technique (SCT) for sequences of
problems. In the presented numerical experiments, an asymptotic
convergence factor of order 0.1 is obtained for ML cycles on all
fine levels, while performing only a few relaxations per cycle.
This factor is obtained for a rectangular cavity as well as for
cavities having reentrant corners, holes and narrow regions, and
presenting clusters of close and equal eigenvalues. A second order
scheme is obtained for the computed eigenvalues and modes with
an amount of work of order O(qN) for ¢ modes of size N on
the finest level. The SCT is illustrated on a meving boundary
problem, where solutions change fast at a small boundary change.
Such computations are applied to the design of new microwave
selective devices.

Index Terms—Maxwell equations, microwave device, resonant
cavity, multilevel numerical techniques, multigrid, eigenvalue
algorithms, continuation techmniques.

I. INTRODUCTION

HE DESIGN of resonant cavities is important in many

applications such as filters, multiplexors, etc. A usually
complicated and time consuming design step is the numerical
approximation of the cavities’ modes and eigenvalues. A
main numerical approach is to represent the problem on a
single-level, e.g., by finite differences or finite element dis-
cretizations, and to solve it through some algebraic procedures
[1]. The discretized problems should have large sizes in order
to obtain accurate modes and eigenvalues. Typically a large
amount of work is required to solve these problems, mainly
due to: 1) the slow convergence rate of single-level iterative
methods; 2) the sequence of increasingly larger problems to
be solved in order to obtain the desired approximation of
continuous solutions from the sequence of discrete solutions;
3) the necessity to solve sequences of eigenvalue problems,
e.g., for different domains or parameters required in design.
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In multilevel (ML) techniques the continuous problem is
represented on several coarser and finer levels, and the solution
process uses interactions between the levels. ML techniques
generally show a faster convergence rate than single-level tech-
niques, provide convergence towards the continuous solution
directly from the solutions on the different levels [2], and
allow a more efficient treatment of problem sequences. This is
mainly due to the reduction of the expensive fine level work
to cheap coarse level work, e.g. in approximating the smooth
solution components on coarse levels [3].

In this paper we apply an ML eigenvalue technique coupled
with a boundary treatment method and a subspace continuation
technique (SCT), presented in Section II, to the design of
resonant cavities. The boundary treatment method is used to
achieve good convergence rates on domains with reentrant cor-
ners, holes and narrow regions, and where the representations
of the cavity and the solutions differ strongly on different
levels. The SCT is used in solving sequences of problems.
Specially difficult cases involving close and equal cigenvalues
are discussed in Section IV. The presentation is selfcontained
and aimed towards the worker in the field, more theoretical
aspects being presented in the reports [4], [5].

The ML techniques are used for the design of microwave
selective devices proposed in [6]. These devices, briefly pre-
sented in Section III, are based on weakly asymmetric res-
onant cavities (WARC) which admit close frequency modes
with localized amplitudes. Short conclusions are presented in
Section V.

II. ALGORITHM DESCRIPTION

This section describes a general ML algorithm to com-
pute several required modes and eigenvalues of a discretized
eigenvalue problem, and discusses its efficiency.

For generality, the eigenvalue problem to be solved is

Lu—Au=0, (1

where L is the operator whose modes u and corresponding
eigenvalues A are sought. The ML algorithm is formulated for
general matrices L, and in our applications L is a discretization
of a partial differential eigenvalue problem derived from the
Maxwell’s equations for the electromagnetic field in a resonant
cavity. Generalized eigenvalue problems of the form Lu =
ABu can be analogously treated. Assume that the required
information is the ¢ eigenvalues A; of L with largest absolute
values, and their corresponding modes w;,¢ = 1,---,¢q. To
compute other eigenvalues, L can be replaced with an operator
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with the same modes, e.g., I —w(ul — L), where w and y are
rescaling and shifting constants.

To describe the ML algorithm a single-level algorithm
[7], often called subspace iteration or Ritz iteration, is first
considered. Denote by U™ = (uf,---,ug) the matrix whose
columns u are the approximations of the required modes at
the computational step n. The subspace iteration algorithm
starts with a random U° and iterates the following three steps:
(i) U™ = LU™1; (ii) orthonormalize the columns of U™; (iii)
separate the solutions in U™*! = U™ E by a Rayleigh Ritz
(RR) type projection. U™ is an approximate basis of the space
generated by the first ¢ modes. The modes are approximated
by the linear combinations U™ E where E is a ¢ x ¢ invertible
matrix to be found. The RR projection for U™ usually finds
E and a diagonal matrix A = diag(Aq,---, A) requiring that
U™ E are approximate modes associated with A

LUME =U"™EA, 2
and solving the small g x g generalized eigenvalue problem
(UNY(LU™E - U™ EA) = 0. (3)

The convergence of the subspace iteration is fast if the first
q eigenvalues have large absolute values compared to the
others, due to step (i). If )\’ approximates well the eigenvalue
A, then the matrix I/ = (L — XMI)~! has an eigenvalue
p=1/(A—X) =~ co and also has the same modes as L.
Thus, if g = 1, the above algorithm using L' instead of L will
converge fast to the accurate mode associated with A. In this
case, the step (i) for L’ replacing L becomes

Ur = (L-XDn"tunt. @

The iterations (4) converge in only a few steps but often raise
huge computational difficulties when A\’ approaches an exact
eigenvalue since the matrix I — X[ is almost singular, and
when L has large size as needed in the cases we consider. One
approach to overcome these difficulties is to write (4) as

(L-NDU"™ =U™ 1, ®)

and to solve it iteratively. The efficiency of solving (5)
iteratively by ML algorithms has been often shown [2], [3],
[8].

A new ML algorithm, also suitable for close and equal
eigenvalues as often appear in microwave devices, is presented
next. In the ML algorithm the problem (1) is discretized on a
sequence of increasingly finer grids. The spaces of discretized
functions corresponding to the different grids will be called
levels, level 1 being the coarsest one. Finite differences, finite
elements, or other discretization types can be used to define
the levels. First, the problem is solved on level 1, here the
work being cheap since the level is coarse. The solution is
then interpolated to level 2 where it is corrected by a few ML
cycles involving level 1, then the solution is interpolated to
the finer level 3 where the solution is corrected by ML cycles
involving the coarser levels, and the algorithm continues in the
same way until the finest level. An ML cycle involving only
two levels is presented next. Denote by L1, Lo the discrete
operators, by Uy, U; two approximate solutions for the two

levels, and by I ]k a transfer operator from level j to level &
(e.g., interpolation). The cycle starts by relaxing U, several
times. Then the level 2 problem

LoUs —UpA =T =0 6)
is transferred to level 1 as
LUy — U1A =17, )
where
Ty = LUy + I (Ty — LoUs). @®)

On level 1 the solutions are separated by U; «— Uy E where
E is obtained as above by an RR type projection of the form

UL WU E - U EA — TVE) = 0. )

This is a generalized RR type projection referred to sub-
sequently as GRR [4]. Then U; is improved by several
relaxations and is used to correct Uy according to

Uy = Uy + I3 (Uy — I3U3). (10)
The cycle ends by relaxing again U, several times. Due to
the introduced 7' terms, the problems (e.g., 6, 7) have the
same form on all levels. This allows to define an ML cycle
as above: on each level the solutions are relaxed, transfered
to coarser levels, corrected by coarser level solutions and, on
some intermediate levels, separated by a GRR.

Usual difficulties encountered by eigenvalue solvers, and
new techniques used to overcome them are discussed next.

The mixing of solutions corresponding to close or equal
eigenvalues slows or even prevents the convergence. To treat
this, we approximate together with the required modes all the
other modes which are mixed with them during processing.
The solutions are treated simultaneously during the cycles,
usually using the projections to separate them on coarse levels.
In this way the algorithm recovers the efficiency obtainable
for well separated eigenvalues. These cases are relevant for
resonant cavities.

The cavity geometry features and the differences in the
cavity representations on different levels are obstacles for
convergence and efficiency. We treat these difficulties by
relaxing the solutions on the layers along the boundaries after
interlevel transfers. Several relaxations are performed on a
few layers along the boundaries, each layer in turn, starting
with the layer closest to the boundary. This procedure we
call boundary layer relaxation (BLR) [5]. In the numerical
experiments to be presented it is shown that using BLR, the full
efficiency obtained in the regular cases (rectangular domains)
can be recovered for domains with reentrant corners, holes,
narrow regions and whose representations differ considerably
on different levels.

The solution’s accuracy is provided by the ML cycles which
improve the approximations of subspaces, the ML projection
which separates the modes, and the BLR, which damps the
large errors along the boundaries. The set of solutions on
consecutive levels can be used to check the convergence of
the discrete solutions towards the continuous ones that can be
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Fig. 1. Section of a cross-shaped closed cavity (CSC) having identical arms,
low height, and a conductor rod whose displacement is used to tune the cavity.

Fig. 2. The first four modes of a CSC having the rod’s center slightly
asymmetrically placed at (0.48, 0.49) a. The plots represent the electric field
distribution in the modes, the magnetic flux lines consisting of level lines of
these distributions.

TABLE I
THE FIRST TwO CLUSTERS OF FOUR APPROXIMATED EIGENVALUES
ofF THE CSC wiTH R = 016a AND CENTER (0.48, 0.49)a

Z
o

O ~J O U O DD =

eigenvalue
-0.15860993687992E+04
-0.16438848116572E+04
-0.17370340398353E+04
-0.17694738183819E+-04
-0.36184697368680E+04
-0.38457723855499E+04
-0.42536026937718E+04
-0.43475194074468F+04

approximated by extrapolation techniques (e.g., of Richardson
type).

This algorithm can be naturally coupled with subspace
continuation techniques (SCT) for the efficient solving of
problem sequences required for the design process (e.g., pa-
rameter tuning or optimization). The SCT use the space
of previous solutions to approximate the new solutions and
correct the new solutions by ML cycles. For example, suppose
that approximate solutions (modes and eigenvalues) were
computed for a parameter value. The SCT computes the
solutions for a new parameter value by: start with the previous

 solutions, update the parameters, relax the solutions several
times, correct the new solutions by several ML cycles. Several
parameters can be updated at a time (e.g., a boundary part).
The solving efficiency for problem sequences is determined by
performing cheap SCT instead of solving a new problem each
time, and by solving most of the problems in the sequence
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The equivalent circuit for CSC. The rod position is modeled by the

Fig. 3.

simultaneous tuning of the four capacitors.
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Fig. 4. The five representations of the discretized closed CSC1, on 5 levels.
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only on coarse levels, (e.g., for intermediate problems or for
parameters which are not of final interest).

This algorithm differs from previous algorithms mainly by
BLR and by SCT. The algorithm is presented in a general
algebraic form and can be used in the same way to compute
real or complex modes and eigenvalues for a larger class of
problems from different engineering domains.

An estimate of memory required to compute ¢ modes of size
N on the finest level is of order O(3¢N). An estimate of work
to solve one eigenvalue problem is O(N') operations per mode.
If a finest level high accuracy separation is needed then the
work may be of order O(¢?>N) for each complete cluster (set
of close or equal eigenvalues) of ¢ modes. The presented ML
techniques may be several orders of magnitude more efficient
(faster) than the single-level techniques (as usual for ML
techniques, see the numerical examples). This is mainly due
to 1) the smooth components of the solutions are efficiently
approximated on coarse levels (these components converge
usually very slow in single-level techniques), 2) the usage
of ML cycles which approximate the fast convergent inverse
power iterations, 3) solving sequences of problems mostly on
coarse levels by SCT, and 4) the convergence and the accurate
approximation of the continuous solutions are obtained from
the sequence of solutions computed on different levels.



COSTINER er al.: MULTILEVEL METHODS APPLIED TO THE DESIGN OF RESONANT CAVITIES 51

O
iy

A
I

W
S
iy

AN
g
atina XSty

i

RV T
:""\‘,’

AH1 T
CHHHON
ST
LAY

Fig. 5. The first four modes of the CSCI (upper row), and of the CSC2 (lower row) on level 4.

III. WARC DESIGN AND APPLICATIONS

WARCSs are branch shaped closed cavities, the branches
being weakly coupled and having close resonant frequencies
[6]. An example of a WARC is the cross-shaped cavity (CSC)
(Fig. 1). The CSC has four weakly coupled branches, the rod
position being used for tuning.

The useful property of some WARC’s consists in the ex-
istence of clusters of localized modes with close eigenvalues.
For example, the first four modes of a weakly asymmetric CSC
have the electric field distribution shown in Fig. 2, and the
corresponding eigenvalues belonging to one cluster (Table I).
The modes localization makes WARC’s suitable for efficient
multiple output band-pass filters, multiplexors, and switches,
which have the splitting, coupling and resonant structures
integrated in the same cavity. For example, a CSC presenting
an input gate in one of the branches and output gates in
each of the other branches can be used as a multiple output
filter [6]. The tuning by the rod’s positions can be simulated
using the SCT technique described in Section II and illustrated
in Section IV-B, (e.g., the variation of the eigenvalues and
of the couplings between modes can be analysed using the
SCT).

The design of such a device is done using an equivalent
circuit [9]. The numerical values of the circuit’s components
are derived from the cavity’s eigenvalues and modes of inter-
est. Design difficulties result from the fact that the equivalent
circuit of a WARC is not an RLC group, as usual, but many
such groups weakly coupled to one another [10]. Further
the eigenvalue algorithms encounter the difficulties cited in
Section II, and additionally, for small cavity asymmetry,
the localized modes are strongly sensitive to small shape
perturbations, as illustrated in Section IV.

An equivalent circuit for the CSC is shown in Fig. 3, where
the cavity’s feeding gates are replaced for simplicity by signal
sources. The four RLC groups are magnetically coupled. The
way of coupling reflects the magnetic flux line geometry in
the cavity (Fig. 2).

The numerical analysis of a WARC consists mainly of the
computation of the eigenvalues and modes for the symmetric
and weakly asymmetric cavities. The results of such compu-
tations for several non-trivial cases, using the ML algorithm
described in Section II, are presented in the next section.

1V. COMPUTATIONAL EXAMPLES

The efficiency of the presented algorithm is iilustrated by
a series of numerical experiments described in the following.
For a symmetric CSC, it is shown that the usual multigrid
convergence rate, accuracy, and minimal work [2] are obtained
by our algorithm, for cases presenting boundary difficulties,
eigenvalue clustering, and coarse level representation difficul-
ties. For an asymmetric CSC, the efficiency of the SCT is
shown. Finally, for a rectangular cavity, a second order scheme
in approximating TE, o , modes is obtained, and it is shown
that the same computational efficiency is achieved for this
regular case as well as for the CSC.

For all the presented cases, L from (1) is a finite difference
discretization of the Laplacian on rectangular grids. The four
eigenvalues of L having the smallest absolute value and
their corresponding modes are computed. The ML cycles
included two relaxations per fine level (levels 3, 4, 5), i.e,
one relaxation on the path down, from fine to coarse, and
one relaxation on the path up, from coarse to fine. Such
cycles are called V(1,1) (indicating the number of relax-
ations). On the coarse levels 1 and 2, several relaxations were
done. The GRR projection was performed only on the coarse
levels.

The problem was discretized by finite differences on rect-
angular grids. The number of points on coarsest grid, level 1,
was 7 x 7 ( n = 7 nodes in each direction) thus the mesh size
was h = a/6. On each finer grid the mesh size was two times
smaller, thus the number of grid points in each direction on
level m = 2,3,---, was 2™ I(n — 1) + 1, i.e., 13, 25, 49,
95, 189 points. The modes were equal to 0 on the boundary.
The Laplacian was discretized by the usual five point scheme,
(AD)ij = WUijo1 + Uijr + Unj + Ui,y — 4U35) /B2,
where h denotes the grid’s mesh size. The transfer operator
from a level to the next finer one was the linear interpolation,
during the ML cycles. The transfer operator from a level with
mesh i to a coarser one with mesh 2h was the transposed
of the linear interpolation, ie., U2" = (4U} + 2U};_; +
2Uz’?g+1+2Uf—1,j+2Uz}31-1,g"‘Uih—l,g—1+Uh—1,j+1+Uzh+1,_;—1+
Ul 1, +1)/16. The relaxation on coarsest level at the start of
the ML algorithm was the shifted power iteration, during the
ML cycles the Gauss-Seidel relaxation (in red-black ordering)
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TABLE II

THE RESIDUALS AT THE BEGINNING AND END OF 13 CYCLES, ON 5 LEVELS , FOR THE FIRST
4 Mopes oF CSC1. TarreeN CycLEs REDUCE THE RESIDUALS To ORDER 10710 oN ALL LEVELS

mode level 1 level 2 level 3 level 4 level 5
1 10E+3 .23E-13 | .18E+3 .76E-12 | .25E+3 .32E-11 | .32E+3 .16E-10 | 40E+3 10E-09
2 12E+3 .84E-14 | .18E+3 .14E-11 | .21E+43 47E-11 | .28E+3 .14E-10 | .35E+3 .89E-10
3 91E42 .89E-14 | .19E+3 .77E-12 | .21E+43 .30E-11 | .28E+3 .72E-11 | 35E+3 .58E-10
4 .11E+43 .86E-13 | .20E+3 .11E-11 | .16E+3 .33E-11 | .22E+4+3 .12E-10 | .29E+3 .54E-10
L » f
0400 — <1100 |-
0.050} -1200 r
| -1300 |—
¢ - mode 1 I
O - mode 2 L
0.010 — # - mode 3 -1400 —
F O - mode 4 N
r I ! | 11 1| | ) S I 1 1 -1500 :—
0'0050 | I I 2 11 1 1 4 | I T 6 8 10 Cyc les - N y
1 1 Va : I | -l l L1 11 l ol it l i 1 1 ] 1 - 1 | 1 1
Fig. 6. The asymptotically constant convergence factors g of V(1,1) ML o 5 y 5 s 10 Tevel

cycles, close to 0.1, for the first 4 modes of the CSC1, on level 5.

0.100

0.080

Fig. 8. The convergence of the eigenvalue 4 computed on 6 levels, and
the approximation by extrapolation of the eigenvalue 4 of the continuous
problem for the CSCI.

TABLE 1II
THE FIRST FOUR EIGENVALUES COMPUTED ON 6 LEVELS AND THE
APPROXIMATIONS OF THE CONTINUOUS PROBLEM EIGENVALUES (c) FOR CSCl1.
OBSERVE THE EQUAL EIGENVALUES 2 AND 3 (WIiTH 12 COMMON DIGITS ) ON
ALL LEVELS AND THE FOUR DEGENERATE EIGENVALUES ON LEVEL 1

level | ev 1 ev 2 ev 3 ev 4
o - level 3 1 -1094.26878334 | -1094.26878334 | -1094.26878334 | -1094.26878334
- lovel 4 2 -1324.94636653 | -1368.07131712 | -1368.07131712 | -1411.97505974
0.010 — % - lovel 5 3 -1381.61635536 | -1433.05778787 | -1433.05778787 | -1483.96253809
N 4 -1373.23765043 | -1436.27359781 | -1436.27359781 | -1498.87806401
L., | | | | 5 -1410.06598639 | -1463.59424179 | -1463.59424179 | -1517 31161962
0.0050 2 — p L.l 5 bt Sl Lt LIO ::y::les 6 -1417.10678892 | -1469.40380631 | -1469.40380631 | -1521.99808316
< -1419.4537 -1471.3403 -1471.3403 -1523.5602
Fig. 7. The asymptotically constant convergence factors ¢ of ¥(1,1) ML
cycles, close to 0.1, on levels 3, 4. 5, for mode 2 of the CSCI.
TABLE IV

was used [7]. The RR projection was performed using a
standard package of algebraic subroutines.

A. Symmetric CSC

A symmetric CSC of size a denoted CSC1, having a central
rod of radius » = 0.1a is considered. (In all presented cases, a
is arbitrarily chosen a = 27/10. The @ can be used to rescale
the wavelength.) The discretizations of CSC1 on 5 levels are
shown in Fig. 4.

The modes computed on level 4 are shown in the upper
row of Fig. 5. An asymptotic convergence rate, close to 0.1,
is obtained on the fine levels (Figs. 6 and 7). A few cycles
were sufficient to obtain accurate modes and eigenvalues on all
levels (Table II). Fewer cycles (1-5) are sufficient to provide
accurate eigenvalues and good approximations of modes. The
convergence rate of the first cycle on each fine level was of
order 0.01 (Fig. 7).

The continuous problem eigenvalues are approximated by
extrapolation using the eigenvalues computed on 6 levels (Fig.

THE ScALAR Propucts OF CSC1 MODES REPRESENTED ON LEVEL 5 AFTER
10 CycLES. THE RR TYPE PROIECTION WAS PERFORMED ON LEVELS 1 AND 2,
IT 1S REMARKABLE THAT THE DEGENERATE MODES 2 AND 3 ARE ACCURATELY
ORTHOGONAL . USUALLY A FINE LEVEL ORTHOGONALIZATION WITHIN THE
DEGENERATE SUBSPACE IS REQUIRED TO OBTAIN ORTHOGONALITY

mode 1 | mode 2 | scalar product
1 2 0.11E-13
1 3 0.24E-13
1 4 0.43E-15
2 3 -0.11E-13
2 4 0.38E-14
3 4 -0.35E-14

8, Table III). The approximated eigenvalues 2 and 3 resulted
equal (12 common digits) on all levels (Table IIT). The mode
separation by projections was performed on the coarsest levels
only. and the resulting modes were accurately orthogonal even
in the degenerate spaces (Table IV).

A comparison of convergence rates of our ML algorithm
and of a single-level improved subspace iteration algorithm
is shown in Fig. 9. The convergence rate of the single-level
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Fig. 9. The residuals of the ML algorithm and of the single-level improved
algorithm for the mode 2 of CSC1 on level 4. The ML algorithm results more
than 100 times faster than the single-level algorithm.

algorithm was 0.98 on level 4, thus 140 single-level cycles
provided the residual decrease 0.1 of a single ML cycle. This
situation becomes worse on finer levels since the convergence
rate of the single-level algorithm tends to 1 as the level
becomes finer, while the ML convergence rate remains of order
0.1. Moreover, a single-level step is usually more expensive
than an ML cycle because the work involved in a single-level
step is of order O(¢*N) for g modes of size N, due to the
orthogonalization and projection, while for an ML cycle it is
of order O(¢N) if the projection is performed on coarse levels.
Moreover, the ML algorithm begins with a lower residual
than the single-level algorithm due to the initial approximation
provided by the coarser levels. Many (hundreds on level 4)
single-level iterations are needed to get the initial accuracy
obtained by the ML algorithm.

B. The SCT for an Asymmetric CSC

The use of SCT is illustrated by computing the modes of
an asymmetric CSC (denoted CSC2) starting from the set of
solutions of CSC1. The CSC2 has the rod center at (0.48,
0.48)a, and its discretizations on four levels are shown in Fig.
10. The CSC2 modes on level 4 obtained after one SCT ML
‘cycle are shown in the lower row of Fig. 5, the converged
modes looking identically. The computed CSC2 eigenvalues
after 1 or 2 cycles are very close to the converged eigenvalues
obtained in several cycles only.

The SCT step consists in: 1) several BLR applied to the
approximated CSC1 modes, providing an initial approximation
of the subspace containing the CSC2 modes; 2) an ML cycle
which separates the CSC2 solutions on coarse levels, and
corrects them. Mode 1 of CSC1 on the four levels, and the
approximated mode 1 of CSC2 in the path from coarse to
fine level of the first cycle are presented in Fig. 11. Already
on the coarsest level, the smooth component of mode 1 was
approximated by the projection. In this case the coarse level
projection is essential and more efficient than a fine level
projection.

P nmlllllllmulllml ml“,.u

Il /’/’lll

Fig. 10. The four representations of the discretized closed CSC2, on 4 levels.

BLR solved the difficulties resulting from the significant

- changes in solutions along the boundaries due to the differ-

ences in the rod discretization for CSC1 and CSC2. The large
differences in the CSC1 and CSC2 solutions determined by the
small change in the rod center on level 4 shows the robustness
of the SCT in treating such cases as often appear in bifurcation
regions.

C. TEp 0,p Modes in a Rectangular Cavity

The analytic discrete and continuous TE,, o,, modes and
eigenvalues of rectangular cavities are known. This case also
presents numerical difficulties because: 1) the eigenvalues
A1,0,2 and Ag o1 are equal; 2) mixing of modes occurs; 3) the
eigenvalues on various levels are different; 4) the interpolation
of an accurate solution on one level is not readily a solution on
the next level. The solutions were approximated on 5 levels.
The results showed that a second order scheme was obtained
for modes and eigenvalues [5]. Already after the first cycle,
on each level, the discrete eigenvalues were approximated
by more than 10 digits and the maximum error between
the computed and analytic modes was of order 10~%. The
resulting solutions were accurately orthogonal at the end of
the first cycle on level 5. Using the sequence of eigenyalues
computed on the five levels, the eigenvalues of the continuous
problem can be approximated by extrapolation with a relative
error of order 10~7. Performing a larger number of cycles,
a convergence rate of order 0.1 per cycle is observed on fine
levels. This convergence rate, the behaviour of the resuits, and
the amount of work required are close to those in the more
difficult presented CSCI case.

The efficiency of BLR is shown in Fig. 12. Often the
ML convergence rate downgrades or the algorithms fail to
converge if BLR are not used.

D. Observations on the Algorithm

The algorithm’s efficiency can be further improved by
several techniques such as: 1) Rayleigh type Quotients which
approximate the ecigenvalues of Lu = Au+ T by A =~
uT (Lu — T)/uTu; 2) the normalization of modes on different
levels; 3) tuning of relaxation parameters; 4) additional modes
introduced in computation to improve the convergence rate of
the sought modes; 5) corrections with rotation, using the more
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Fig. 11,

Fig. 12.  The error of the approximated TE> o 2 mode of a rectangular cavity
after 1 cycle without BLR (left), and after 1 cycle with BLR (right).

expensive formula Uy = UsE + I?(U; — I3U>E) instead of
(10).

If one V cycle provides a 0.1 convergence rate then one
combined cycle CV consisting of a combination of & cycles
with different relaxation parameters can provide a convergence
better than 10~*, which one would obtain by applying & cycles
V' with fixed relaxations.

The algorithm can be generalized to solve nonlinear eigen-
value problems [11].

The numerical results presented in this section were ob-
tained by the software [12]. The algorithm was developed to
be used in the design of new selective microwave devices
based on WARC [6], some of which are the subject of a
patent application.

V. CONCLUSIONS

A multilevel method to compute the modes and eigenvalues
of resonant cavities is presented. The problem is represented
on a sequence of coarser to fine levels and the expensive
fine level computations are much reduced to cheap coarser
level computations. The algorithm can treat specific difficulties
related to resonant cavities, such as close or equal eigenvalues,
or difficulties induced by cavity shapes.

Sequences of problems resulting from a change of the
cavity shape can be treated efficiently using SCT coupled with
BLR, even in cases when small boundary changes imply large
solution changes, as may happen close to bifurcation regions.

The numerical experiments described illustrate the method’s
robustness when it is used to obtain accurate solutions for very
close or equal frequencies, and domains including reentrant
corners, holes and narrow regions. In these experiments, an
asymptotic convergence factor of order 0.1 is obtained for ML
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Mode 1 on four levels, for the CSC1 (upper row), and for the CSC2 in the path from coarse to fine level of the first SCT ML cycle (lower row).

cycles on all fine levels, performing only a few relaxations per
cycle. A second-order scheme is obtained for the computed
eigenvalues and modes with an amount of work of order
O(gN) for ¢ modes of size N on the finest level.

The algorithm has a general algebraic form. It can be used
for various operators and discretizations (finite differences,
finite elements, etc.) in other engineering applications.
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