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Multilevel Methods Applied to the

Design of Resonant Cavities
S. Costiner, F. Manolache, and S. Ta’ asan

Abstract—An application of multilevel (ML) methods to com-
pute the modes and eigenvalues of resonant cavities is presented.
The involved methods include an ML eigenvalue solver, an
ML mode separation technique, a boundary treatment method,
and a subspace continuation technique (SCT) for sequences of
problems. In the presented numerical experiments, an asymptotic
convergence factor of order 0.1 is obtained for ML cycles on all
fine levels, while performing only a few relaxations per cycle.
This factor is obtained for a rectangular cavity as well as for
cavities having reentrant corners, holes and narrow regions, and
presenting clusters of close and equal eigenvalues. A second order

scheme is obtained for the computed eigenvalues and modes with
an amount of work of order O (qN ) for q modes of size N on
the finest level. The SCT is illustrated on a moving boundary

problem, where solutions change fast at a small boundary change.

Such computations are applied to the design of new microwave

selective devices.

Index Terms—Maxwell equations, microwave device, resonant
cavity, multilevel numerical techniques, multigrid, eigenvalue

algorithms, continuation techniques.

I. INTRODUCTION

T HE DESIGN of resonant cavities is important in many

applications such as filters, multiplexors, etc. A usually

complicated and time consuming design step is the numerical

approximation of the cavities’ modes and eigenvalues. A

main numerical approach is to represent the problem on a

single-level, e.g., by finite differences or finite element dis -

cretizations, and to solve it through some algebraic procedures

[1]. The discretized problems should have large sizes in order

to obtain accurate modes and eigenvalues. Typically a large

amount of work is required to solve these problems, mainly

due to: 1) the slow convergence rate of single-level iterative

methods; 2) the sequence of increasingly larger problems to

be solved in order to obtain the desired approximation of

continuous solutions from the sequence of discrete solutions;

3) the necessity to solve sequences of eigenvalue problems,

e.g., for different domains or parameters required in design.
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In multilevel (ML) techniques the continuous problem is

represented on several coarser and finer levels, and the solution

process uses interactions between the levels. ML techniques

generally show a faster convergence rate than single-level tech-

niques, provide convergence towards the continuous solution

directly from the solutions on the different levels [2], and

allow a more efficient treatment of problem sequences. This is

mainly due to the reduction of the expensive fine level work

to cheap coarse level work, e.g. in approximating the smooth

solution components on coarse levels [3].

In this paper we apply an ML eigenvalue technique coupled

with a boundary treatment method and a subspace continuation

technique (SCT), presented in Section II, to the design of

resonant cavities. The boundary treatment method is used to

achieve good convergence rates on domains with reentrant cor-

ners, holes and narrow regions, and where the representations

of the cavity and the solutions differ strongly on different

levels. The SCT is used in solving sequences of problems.

Specially difficult cases involving close and equal eigenvalues

are discussed in Section IV. The presentation is selfcontained

and aimed towards the worker in the field, more theoretical

aspects being presented in the reports [4], [5].

The ML techniques are used for the design of microwave

selective devices proposed in [6]. These devices, briefly pre-

sented in Section III, are based on weakly asymmetric res-

onant cavities (WARC) which admit close frequency modes

with localized amplitudes. Short conclusions are presented in

Section V.

II. ALGORITHM DESCRIPTION

This section describes a general ML algorithm to com-

pute several required modes and eigenvalues of a discretized

eigenvalue problem, and discusses its efficiency.

For generality, the eigenvalue problem to be solved is

Lu– Au=O, (1)

where L is the operator whose modes u and corresponding

eigenvalues A are sought. The ML algorithm is formulated for

general matrices L, and in our applications L is a discretization
of a partial differential eigenvalue problem derived from the

Maxwell’s equations for the electromagnetic field in a resonant

cavity. Generalized eigenvalue problems of the form Lu =

Mu can be analogously treated. Assume that the required

information is the q eigenvalues )i of L with largest absolute

values, and their corresponding modes Ui, i = 1, . . . . q. To

compute other eigenvalues, L can be replaced with an operator
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with the same modes, e.g., I – W(PI – L), where w and LL are

resealing and shifting constants.

To describe the ML algorithm a single-level algorithm

[7], often called subspace iteration or Ritz iteration, is first

considered. Denote by Un = (uT, . .-, u: ) the matrix whose

columns u? are the approximations of the required modes at

the computational step n. The subspace iteration algorithm

starts with a random ~“ and iterates the following three steps:

(i) Un = LUn-l; (ii) orthonormalize the columns of Un; (iii)

separate the solutions in Un+l = Un E by a Rayleigh Ritz

(RR) type projection. Un is an approximate basis of the space

generated by the first g modes. The modes are approximated

by the linear combinations Un E where E is a q x q invertible

matrix to be found. The RR projection for W’ usually finds

E and a diagonal matrix A = diag(~l, . . . . Aq) requiring that

U’ E are approximate modes associated with A

LUn E = Un EA, (2)

and solving the small q x q generalized eigenvalue problem

(U”) T(LU” E - U“ EA) = O. (3)

The convergence of the subspace iteration is fast if the first

q eigenvalues have large absolute values compared to the

others, due to step (i). If ~’ approximates well the eigenvalue

), then the matrix L’ = (L – ~’~)’1 has an eigenvalue

~ = l/(A – A’) N w and also has the same modes as L.

Thus, if q = 1, the above algorithm using L’ instead of L will

converge fast to the accurate mode associated with A. In this

case, the step (i) for L’ replacing L becomes

Un = (L – A’l)-lUn-l. (4)

The iterations (4) converge in only a few steps but often raise

huge computational difficulties when A’ approaches an exact

eigenvalue since the matrix L – ~’I is almost singular, and

when L has large size as needed in the cases we consider. One

approach to overcome these difficulties is to write (4) as

(L - A’I)U’ = U“-’, (5)

and to solve it iteratively. The efficiency of solving (5)

iteratively by ML algorithms has been often shown [2], [3],

[8].

A new ML algorithm, also suitable for close and equal

eigenvalues as often appear in microwave devices, is presented

next. In the ML algorithm the problem (1) is discretized on a

sequence of increasingly finer grids. The spaces of discretized

functions corresponding to the different grids will be called

levels, level 1 being the coarsest one. Finite differences, finite

elements, or other discretization types can be used to define

the levels. First, the problem is solved on level 1, here the

work being cheap since the level is coarse. The solution is

then interpolated to level 2 where it is corrected by a few ML

cycles involving level 1, then the solution is interpolated to

the finer level 3 where the solution is corrected by ML cycles

involving the coarser levels, and the algorithm continues in the

same way until the finest level. An ML cycle involving only

two levels is presented next. Denote by L1, Lz the discrete
operators, by U1, U2 two approximate solutions for the two

levels, and by 1: a transfer operator from level j to level k

(e.g., interpolation). The cycle starts by relaxing Uz several

times. Then the level 2 problem

L2U2 – U2A = T2 = O (6)

is transferred to level 1 as

LIU1– UIA=T1, (7)

where

T1 = L11~U2 + 1;(T2 – LJYz). (8)

On level 1 the solutions are separated by U1 ~ UIE where

E is obtained as above by an RR type projection of the form

U~(LIUIE – UIEA – TIE) = O. (9)

This is a generalized RR type projection referred to sub-

sequently as GRR [4]. Then U1 is improved by several

relaxations and is used to correct U2 according to

Uz = Uz +I:(U1 –I~Uz). (lo)

The cycle ends by relaxing again Uz several times. Due to

the introduced T terms, the problems (e.g., 6, 7) have the

same form on all levels. This allows to define an ML cycle

as above: on each level the solutions are relaxed, transf’ered

to coarser levels, corrected by coarser level solutions and, on

some intermediate levels, separated by a GRR.

Usual difficulties encountered by eigenvalue solvers, and

new techniques used to overcome them are discussed ne~t.

The mixing of solutions corresponding to close or equal

eigenvalues slows or even prevents the convergence. To treat

this, we approximate together with the required modes all the

other modes which are mixed with them during processing.

The solutions are treated simultaneously during the cycles,

usually using the projections to separate them on coarse levels.

In this way the algorithm recovers the efficiency obtainable

for well separated eigenvalues. These cases are relevant for

resonant cavities.

The cavity geometry features and the differences inl the

cavity representations on different levels are obstacles for

convergence and efficiency. We treat these difficulties by

relaxing the solutions on the layers along the boundaries after

interlevel transfers. Several relaxations are performed on a

few layers along the boundaries, each layer in turn, starting

with the layer closest to the boundary. This procedure we

call boundary layer relaxation (BLR) [5]. In the nurnmical

experiments to be presented it is shown that using BLR, the full

efficiency obtained in the regular cases (rectangular domains)

can be recovered for domains with reentrant corners, holes,

narrow regions and whose representations differ considerably

on different levels.

The solution’s accuracy is provided by the ML cycles which

improve the approximations of subspaces, the ML projection

which separates the modes, and the BLR, which damps the

large errors along the boundaries. The set of solutions on

consecutive levels can be used to check the convergence of

the discrete solutions towards the continuous ones that can be
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Fig, 1. Section of a cross-shaped closed cavity (CSC) having identical arms,
low height, and a conductor rod whose dkplacement is used to tune the cavity.

Fig. 2. The first four modes of a CSC having the rod’s center slightly

asymmetrically placed at (0.48, 0.49) a. The plots represent the electric field
distribution in the modes, the magnetic flux lines consisting of level lines of

these distributions.

TABLE I

THE FIRST Two CLUSTERSOF FOUR APPROXIMATED EIGENVALUES
OF THE CSC WITH R = O16aAND CENTER (0.48, 0.49)a

14 ] -0.17694738183819 E+04

5 I -0.36184697368680 E+04

approximated by extrapolation techniques (e.g., of Richardson

type).

This algorithm can be naturally coupled with subspace

continuation techniques (SCT) for the efficient solving of

problem sequences required for the design process (e.g., pa-

rameter tuning or optimization). The SCT use the space

of previous solutions to approximate the new solutions and

correct the new solutions by ML cycles. For example, suppose

that approximate solutions (modes and eigenvalues) were

computed for a parameter value. The SCT computes the

solutions for a new parameter value by: start with the previous

solutions, update the parameters, relax the solutions several

times, correct the new solutions by several ML cycles. Several

parameters can be updated at a time (e.g., a boundary part).

The solving efficiency for problem sequences is determined by

performing cheap SCT instead of solving a new problem each

time, and by solving most of the problems in the sequence

“E!!!IB’
“+?!!!iiIiE?’

Fig. 3. The equivalent circuit for CSC. The rod position is modeled by the

simultaneous tuning of the four capacitors.

Fig. 4. The five representations of the discretized closed CSC1, on 5 levels.

only on coarse levels, (e.g., for intermediate problems or for

parameters which are not of final interest).

This algorithm differs from previous algorithms mainly by

BLR and by SCT. The algorithm is presented in a general

algebraic form and can be used in the same way to compute

real or complex modes and eigenvalues for a larger class of

problems from different engineering domains.

An estimate of memory required to compute q modes of size

N on the finest level is of order O(3qN). An estimate of work

to solve one eigenvalue problem is O(N) operations per mode.

If a finest level high accuracy separation is needed then the

work may be of order O (q2 N) for each complete cluster (set

of close or equal eigenvalues) of q modes. The presented ML

techniques may be several orders of magnitude more efficient

(faster) than the single-level techniques (as usual for ML

techniques, see the numerical examples). This is mainly due

to 1) the smooth components of the solutions are efficiently

approximated on coarse levels (these components converge

usually very slow in single-level techniques), 2) the usage

of ML cycles which approximate the fast convergent inverse

power iterations, 3) solving sequences of problems mostly on

coarse levels by SCT, and 4) the convergence and the accurate

approximation of the continuous solutions are obtained from

the sequence of solutions computed on different levels.
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Fig. 5. The first four modes of the CSC 1 (upper row), and of the CSC2 (lower row) on level 4.

III. WARC DESIGN AND APPLICATIONS

WARCS are branch shaped closed cavities, the branches

being weakly coupled and having close resonant frequencies

[6]. An example of a WARC is the cross-shaped cavity (CSC)

(Fig. 1). The CSC has four weakly coupled branches, the rod

position being used for tuning.

The useful property of some WARC’s consists in the ex-

istence of clusters of localized modes with close eigenvalues.

For example, the first four modes of a weakly asymmeh-ic CSC

have the electric field distribution shown in Fig. 2, and the

corresponding eigenvalues belonging to one cluster (Table I).

The modes localization makes WARC’s suitable for efficient

multiple output band-pass filters, multiplexors, and switches,

which have the splitting, coupling and resonant structures

integrated in the same cavity. For example, a CSC presenting

an input gate in one of the branches and output gates in

each of the other branches can be used as a multiple output

filter [6]. The tuning by the rod’s positions can be simulated

using the SCT technique described in Section II and illustrated

in Section IV-B, (e.g., the variation of the eigenvalues and

of the couplings between modes can be analysed using the

SCT).

The design of such a device is done using an equivalent

circuit [9]. The numerical values of the circuit’s components

are derived from the cavity’s eigenvalues and modes of inter-

est. Design difficulties result from the fact that the equivalent

circuit of a“WARC is not an RLC group, as usual, but many

such groups weakly coupled to one another [10]. Further

the eigenvalue algorithms encounter the difficulties cited in

Section II, and additionally, for small cavity asymmetry,

the localized modes are strongly sensitive to small shape

perturbations, as illustrated in Section IV.

An equivalent circuit for the CSC is shown in Fig. 3, where

the cavity’s feeding gates are replaced for simplicity by signal

sources. The four RLC groups are magnetically coupled. The

way of coupling reflects the magnetic flux line geometry in
the cavity (Fig. 2).

The numerical analysis of a WARC consists mainly of the

computation of the eigenvalues and modes for the symmetric

and weakly asymmetric cavities. The results of such compu-

tations for several non-trivial cases, using the ML algorithm

described in Section II, are presented in the next section.

IV. COMPUTATIONAL EXAMPLES

The efficiency of the presented algorithm is illustrated by

a series of numerical experiments described in the following,

For a symmetric CSC, it is shown that the usual muhigrid

convergence rate, accuracy, and minimal work [2] are obtained

by our algorithm, for cases presenting boundary difficulties,

eigenvalue clustering, and coarse level representation difficul-

ties. For an asymmetric CSC, the efficiency of the SCT is

shown. Finally, for a rectangular cavity, a second order scheme

in approximating TE~,o,P modes is obtained, and it is shown

that the same computational efficiency is achieved for this

regular case as well as for the CSC.

For all the presented cases, L from (1) is a finite difference

discretization of the Laplacian on rectangular grids. The four

eigenvalues of L having the smallest absolute value and

their corresponding modes are computed. The ML cycles

included two relaxations per fine level (levels 3, 4, 5)., i.e.,

one relaxation on the path down, from fine to coarse,, and

one relaxation on the path up, from coarse to fine. Such

cycles are called V( 1, 1) (indicating the number of relax-

ations). On the coarse levels 1 and 2, several relaxations were

done. The GRR projection was performed only on the coarse

levels.

The problem was discretized by finite differences on rect-

angular grids. The number of points on coarsest grid, level 1,

was 7 x 7 ( n = 7 nodes in each direction) thus the mesh size

was h = a/6. On each finer grid the mesh size was two Itimes

smaller, thus the number of grid points in each directicm on

level m = 2,3, . . . , was 2m–l(n – 1) + 1, i.e., 13, 25, 49,

95, 189 points. The modes were equal to O on the boundary.

The Laplacian was discretized by the usual five point scheme,

(A~U)ij = (U,j-1 + ~i,j+I + ~~-l,j + ~i+I,J - Wj)/~2,

where h denotes the grid’s mesh size. The transfer operator

from a level to the next finer one was the linear interpolation,

during the ML cycles. The transfer operator from a level with

mesh h to a coarser one with mesh 2h was the transposed
of the linear interpolation, i.e., U# = (4U$ + 2U~j_l +

2u~j+l+2uP_l,j+ 2u:+l,j+~:-l,j-l +u?-l,j+l+u?+l,.) -l+

uj+l,j+l)/l(j. The relaxation on coarsest level at the s.fi~ of

the ML algorithm was the shifted power iteration, during the

ML cycles the Gauss-Seidel relaxation (in red-black ordering)
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TABLE H

THE RESRXJALSAT THE BEGrNNING AND END OF 13 CYCLES. ON 5 LEVELS . FOR THE FIRST

4 MODES OF CSC 1. THIRTEEN CYCLES REDUCE THE RESIDUALS TO ORDER 10 – 10 ON ALL LEVELS

mode level 1 level 2 level 3 level 4 level 5

1 .1OE+3 .23E13 .18E+3 .76E12 .25E+3 .32E-11 .32E+3 .16E-10 40E+3 1OE-O9

2 .12E+3 .84E14 ,18E+3 .14D11 .21E+3 .47E-11 .28E+3 .14E-10 .35E+3 .89E-10

3 .91E+2 .89E14 .19E+3 .77E12 .21E+3 .30E-11 .28E+3 .72E-11 35E+3 .58E-10

4 .11E+3 .86E13 .20E+3 .llE-11 .16E+3 .33E-11 .22E+3 .12E-10 .29E+3 .54E-10

v mode1

❑ nwd, 2

x - mode 3
0 - rmda 4

I Ill Ill II 1!o.oo50~
2 4 5 8 10 Cy 3s

Fig. 6. The asymptotically constant convergence factors & of IJ( 1,1 ) ML
cycles, close to 0.1, for the first 4 modes of the CSC 1, on level 5.

u

0s00 –

04050 -

0,010 —

/

0 - 10,.1 3

❑ level 4
n - level 5

0.0051 I 1,, l,, 1! I
o 2 4 a 8 10 Cy IS

Fig. 7. The asymptotically constant convergence factors L of T’(I, 1) ML
cycles, close to 0.1, on levels 3, 4. 5, for mode 2 of the CSC1.

was used [7]. The RR projection was performed using a

standard package of algebraic subroutines.

A. Symmetric CSC

A symmetric CSC of size a denoted CSC1, having a central

rod of radius r = 0. la is considered, (In all presented cases, a
is arbitrarily chosen a = 27r/ 10, The a can be used to rescale

the wavelength.) The discretizations of CSC 1 on 5 levels are

shown in Fig. 4.

The modes computed on level 4 are shown in the upper

row of Fig. 5. An asymptotic convergence rate, close to 0.1,

is obtained on the fine levels (Figs. 6 and 7). A few cycles

were sufficient to obtain accurate modes and eigenvalues on all

levels (Table II). Fewer cycles (l–5) are sufficient to provide

accurate eigenvalues and good approximations of modes. The

convergence rate of the first cycle on each fine level was of

order 0.01 (Fig. 7).

The continuous problem eigenvalues are approximated by

extrapolation using the eigenvalues computed on 6 levels (Fig.

-1100

-1200

-1300
l\

o 2 4 6 8 lrJ level

Fig. 8. The convergence of the eigenvalue 4 computed on 6 levels, and

the approximation by extrapolation of the eigenvalue 4 of the continuous

problem for the CSC1.

TABLE III
THE FIRST FOUR EIGENVALUES COMPUTED ON 6 LEVELS AND THE

APPROXIMATIONSOF THE Cormmrous PROBLEM EIGENVALUES (c) FOR CSC 1.
OBSERVETHE EQUAL EIGENVALUZS 2 AND 3 (WITH 12 COMMON DIGITS ) ON

ALL LEVELS AND THE FOUR DEGENERATEEIGENVALUESON LEVEL 1

rlevel
1
2
3
4
5
6
c

ev 1
-1094.26878334

-1324.94636653

-1381.61635536

-1373.23765043

-1410.06598639

-1417.10678892

-1419.4537

~“ ~

-1094.26878334

-1368.07131712

-1433.05778787

-1436.27359781

-1463.59424179

-1469.40380631

-1471.3403

ev 3

-1094 .26S78334
-1368.07131712

-1433,05778787

-1436,27359781

-1463.59424179

-1469.40380631

-1471.3403

ev 4
-1094.26878334
-1411.97505974

-1483.96253809

-1498,87806401

-151731161962

-1521,99808316

-1523.5602

TABLE IV
THE SCALAR PRODUCTS OF CSC 1 MODES REPRESENTED ON LEVEL 5 AFTER

IO CYCLES. THE RR TYPE PROJECTIONWAS PERFORMEDON LEVELS 1 AND 2,

IT IS REMARKABLE THAT THE DEGENERATEMODES 2 AND 3 ABX ACCURATELY

ORTHOGONAL. USUALLY A FrNE LEVEL ORTHOGONALIZATIONWITHIN THE
DEGENERATE SUBSPACEIS REQUIREDTO OBTAIN ORTHOGONALITY

[
mode 1 mode 2 scalar product

1 I 2 I 0.llE-13 IIw
8, Table III). The approximated eigenvalues 2 and 3 resulted

equal (12 common digits) on all levels (Table III). The mode

separation by projections was performed on the coarsest levels

only. and the resulting modes were accurately orthogonal even

in the degenerate spaces (Table IV).

A comparison of convergence rates of our ML algorithm

and of a single-level improved subspace iteration algorithm

is shown in Fig, 9. The convergence rate of the single-level
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Fig. 9. The residuals of the ML algorithm and of the single-level improved
algorithm for the mode 2 of CSC 1 on level 4. The ML algorithm results more

than 100 times faster than the single-level algorithm.

algorithm was 0.98 on level 4, thus 140 single-level cycles

provided the residual decrease 0.1 of a single ML cycle. This

situation becomes worse on finer levels since the convergence

rate of the single-level algorithm tends to 1 as the level

becomes finer, while the ML convergence rate remains of order

0.1. Moreover, a single-level step is usually more expensive

than an ML cycle because the work involved in a single-level

step is of order 0(g2N) for g modes of size ~, due to the

orthogonalization and projection, while for an ML cycle it is

of order O (qN) if the projection is performed on coarse levels.

Moreover, the ML algorithm begins with a lower residual

than the single-level algorithm due to the initial approximation

provided by the coarser levels. Many (hundreds on level 4)

single-level iterations are needed to get the initial accuracy

obtained by the ML algorithm.

B. The SCTfor an Asymmetric CSC

The use of SCT is illustrated by computing the modes of

an asymmetric CSC (denoted CSC2) starting from the set of

solutions of CSC 1. The CSC2 has the rod center at (0.48,

0.48)a, and its discretizations on four levels are shown in Fig.

10. The CSC2 modes on level 4 obtained after one SCT ML

cycle are shown in the lower row of Fig. 5, the converged

modes looking identically. The computed CSC2 eigenvalues

after 1 or 2 cycles are very close to the converged eigenvalues

obtained in several cycles only.

The SCT step consists in: 1) several BLR applied to the

approximated CSC 1 modes, providing an initial approximation

of the subspace containing the CSC2 modes; 2) an ML cycle

which separates the CSC2 solutions on coarse levels, and

corrects them, Mode 1 of CSC 1 on the four levels, and the

approximated mode 1 of CSC2 in the path from coarse to

fine level of the first cycle are presented in Fig. 11. Already

on the coarsest level, the smooth component of mode 1 was

approximated by the projection. In this case the coarse level

projection is essential and more efficient than a fine level

projection.

Fig. 10. The fonr representations of the dkcretized closed CSC2, on 4 kvels.

BLR solved the difficulties resulting from the significant

changes in solutions along the boundaries due to the differ-

ences in the rod discretization for CSC 1 and CSC2. The 1arge

differences in the CSC 1 and CSC2 solutions determined by the

small change in the rod center on level 4 shows the robustness

of the SCT in treating such cases as often appear in bifurcation

regions.

C. TE~,o,P Modes in a Rectangular Cavity

The analytic discrete and continuous TE~,o,P modes and

eigenvalues of rectangular cavities are known. This case also

presents numerical difficulties because: 1) the eigenvalues

~1,0,2 and A2,0,1 are equal; 2) mixing of modes occurs; 3) the

eigenvalues on various levels are different; 4) the interpolation

of an accurate solution on one level is not readily a solution on

the next level. The solutions were approximated on 5 levels.

The results showed that a second order scheme was obtained

for modes and eigenvalues [5]. Already after the first cycle,

on each level, the discrete eigenvalues were approximated

by more than 10 digits and the maximum error between

the computed and analytic modes was of order 10-4. The

resulting solutions were accurately orthogonal at the end of

the first cycle on level 5. Using the sequence of eigenvalues

computed on the five levels, the eigenvalues of the continuous

problem can be approximated by extrapolation with a relative

error of order 10–7. Performing a larger number of cycles,

a convergence rate of order 0.1 per cycle is observed on fine

levels. This convergence rate, the behaviour of the results, and

the amount of work required are close to those in the more

difficult presented CSC 1 case.

The efficiency of BLR is shown in Fig. 12. Often the

ML convergence rate downgrades or the algorithms fail to

converge if BLR are not used.

D. Observations on the Algorithm

The algorithm’s efficiency can be further improved by

several techniques such as: 1) Rayleigh type Quotients which

approximate the eigenvalues of Lu = Au + T by A x

u~ (Lu —T) /uT u; 2) the normalization of modes on different
levels; 3) tuning of relaxation parameters; 4) additional modes

introduced in computation to improve the convergence rate of

the sought modes; 5) corrections with rotation, using the more
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Fig. 11. Mode 1 on four levels, for the CSC1 (upper row), and for the CSC2 in the path from coarse to tine level of the first SCT ML cycle (lower row).

Fig. 12, The error of the approximated TEz,0,1 mode of a rectangular cavity

after 1 cycle without BLR (left), and after 1 cycle with BLR (right).

expensive formula UZ = UZE + 1? (~1 – 1; ~zE) instead of

(lo).

If one V cycle provides a 0.1 convergence rate then one

combined cycle Ck V consisting of a combination of k cycles

with different relaxation parameters can provide a convergence

better than 10-~, which one would obtain by applying k cycles

V with fixed relaxations.

The algorithm can be generalized to solve nonlinear eigen-

value problems [11].

The numerical results presented in this section were ob-

tained by the software [12]. The algorithm was developed to

be used in the design of new selective microwave devices

based on WARC [6], some of which are the subject of a

patent application.

V. CONCLUSIONS

A multilevel method to compute the modes and eigenvalues

of resonant cavities is presented. The problem is represented

on a sequence of coarser to fine levels and the expensive
fine level computations are much reduced to cheap coarser

level computations. The algorithm can treat specific difficulties

related to resonant cavities, such as close or equal eigenvalues,

or difficulties induced by cavity shapes.

Sequences of problems resulting from a change of the

cavity shape can be treated efficiently using SCT coupled with

BLR, even in cases when small boundary changes imply large

solution changes, as may happen close to bifurcation regions.

The numerical experiments described illustrate the method’s

robustness when it is used to obtain accurate solutions for very

close or equal frequencies, and domains including reentrant

comers, holes and narrow regions, In these experiments, an

asymptotic convergence factor of order 0.1 is obtained for ML

cycles on all fine levels, performing only a few relaxations per

cycle. A second-order scheme is obtained for the computed

eigenvalues and modes with an amount of work of order

O(qN) for q modes of size IV on the finest level.

The algorithm has a general algebraic form. It can be used

for various operators and discretizations (finite differences,

finite elements, etc.) in other engineering applications.
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